
Qt-style C++ in Haskell
Wolfgang Jeltsch

October 7, 2008

The programming paradigms behind Haskell and C++ are very different.
Therefore, accessing a C++ library from Haskell is not straightforward. One
has to deal with such C++ features as static and non-static method mem-
bership, function overloading and inheritance. In addition, the Qt library
uses signals and slots which are not part of standard C++. We present
an approach for simulating all these features in Haskell. Our key idea is
to represent C++ entities like classes and methods by single-value Haskell
types. This allows us to express relationships between these entities using
multi-parameter type classes and type families. We are thus able to program
in Haskell similarly to how we would program in C++ and enjoy the same
compile-time checks. In the case of connecting signals to slots we can even
offer checks at compile time where Qt only allows runtime checks.

1 Our goal
Our goal is to provide convenient access to C++ libraries from Haskell. We want to
support signals and slots as introduced by Qt. Our goal is not to provide means for full
object-oriented programming. All we want is to access a library which is already there
and complete. This has the consequence that we do not offer means for forming new
subclasses and that we allow access only to public class members. We do not make it
possible to emit signals or to connect signals to signals since emitting signals can only
be done from inside a class.1

2 Basics
Haskell has a class system which is very different from the OO-style class system of C++.
Therefore we do not try to map C++ classes to Haskell classes and C++ methods to
Haskell methods. Instead, we try to describe the different entities of the C++ library
(classes, methods, and so on) by single-value types. Using multi-parameter type classes
and type families, we can then express the relationships of these entities with a pure

1Actually, emitting a signal means calling a protected method internally.

1

Haskell library. For example, we can assign a return type and an implementation to
every triple of a class, a method name and a list of argument types. This means that
we use Haskell as a kind of meta language in which we describe the C++ library in
question.

3 The solution in detail
In the following subsections, we present the implementation of a small Haskell library
which allows access to object-oriented libraries according to the strategies sketched
above. We also mention what kind of code a binding to a concrete C++ library would
have to add.

3.1 Classes
As told above, we represent classes as types with a single (non-bottom) value. For each
class, an algebraic data type with one nullary data constructor has to be introduced.
The name of the data type as well as the name of the data constructor should match
the class name used in the C++ library. We call the type as well as its sole value a class
ID.

To represent classes in static method calls, we introduce the type Class:

newtype Class classID = Class classID

3.2 References
We access objects always through pointers. This is necessary because we want to bind to
C++ in a portable way. Since the Haskell FFI specifies only access to C and PASCAL
libraries, we bind to wrappers around the C++ libraries. These wrappers are written in
C++ but have a C interface (using export "C"). This has the consequence that only
values of valid C types can be transfered from C++ to Haskell and back.

We use values of type char ∗ for referring to C++ objects in the C interface. However,
on the Haskell side, we want to restore type safety. Therefore, we introduce a type Ref
which is parameterized by a class ID:

newtype Ref classID = Ref (Ptr CChar)

In the remainder of our library, we will have to calculate the class ID and the C pointer
from a value of Ref . So we provide the following two helper functions:

classID :: Ref classID → classID
classID = error "Calculated class ID cannot be evaluated."

ptr :: Ref classID → Ptr CChar
ptr (Ref cCharPtr) = cCharPtr

Note that classID always returns ⊥. This should be no problem since class IDs are not
expected to be evaluated. They fulfill their purpose solely at the type level.

2

3.3 Constructors and destructors
We do not allow to call C++ constructors and destructors directly. Instead, we let pro-
grammers call the C++ new and delete operators from Haskell. For each constructor
and each destructor, we need a separate C wrapper function for the respective new or
delete call. To call these wrapper functions consistently, we introduce two type classes:

class Constructor classID args where

new :: classID → args → IO (Ref classID)
class Destructor classID where

delete :: Ref classID → IO ()

The type variable args stands for the type of the complete argument list. Empty argu-
ment lists are denoted by the unit value, argument lists with a single value by this very
value, and argument lists with more than one value by tuples. Since one can put paran-
theses around a single argument value without changing the meaning of the program, it
is possible to write argument lists exactly as one would do in C++

3.4 Methods
There are static methods and instance methods. We want to use a single type class for
both kinds of methods. We distinguish between them using single-value data types:

data Static = Static
data Instance = Instance

Depending on its kind, a method works on different kinds of “entities”. Static methods
work on classes while instance methods work on class instances. We introduce a class
MethodKind with an associated type Entity so that applying Entity to a method kind
and a class ID yields the corresponding entity type:

class MethodKind methodKind where

type Entity methodKind :: ∗ → ∗
instance MethodKind Static where

type Entity Static = Class
instance MethodKind Instance where

type Entity Instance = Ref

In C++, a method is identified by a class, the method name and the list of argument
types. The result type is not used for identifying the method. We introduce a class
Method whose instances denote concrete C++ methods:

class (MethodKind (Kind classID methodID args))⇒
Method classID methodID args where

3

type Kind classID methodID args :: ∗
type Result classID methodID args :: ∗
invoke :: Entity (Kind classID methodID args) classID → methodID → args →

IO (Result classID methodID args)

Kind gives the kind of the method (Static or Instance) and Result gives its return type.
The invoke method calls the C wrapper around the respective C++ method call.

Calling invoke directly does not really mimic the C++ syntax of method calls. In
C++, a method call consist of a pointer, an arrow and the actual method call when
using pointers to denote objects and classes.

The actual method call consists of the method name (usually starting with a lowercase
letter) and the argument list without any additional characters inbetween. This looks
like a Haskell function application. So we make it possible to use function application
on the Haskell side. We introduce a type Application which denotes the actual method
call by just listing the method ID and the list of arguments:

data Application id args = Application id args

For every method ID, a function should be introduced which is equivalent to the partial
application of the Application data constructor to the method ID in question. This
function should be named like the methodID, except that the first letter should be
lowercase.

For mimicing the method call syntax of C++, we introduce an operator ;:

infix 0 ;

(;) :: (Method classID methodID args)⇒
Entity (Kind classID methodID args) classID →
Application methodID args →
IO (Result classID methodID args)

entity ; Application methodID args = invoke entity methodID args

3.5 Slots
Like methods, a slot is identified by its class, its name and its list of argument types.
We introduce a class Slot :

class (Method classID slotID args)⇒ Slot classID slotID args where

slotConnectString :: classID → slotID → args → String

Each slot can also be used as a method, so Slot is a subclass of Method . The class
method slotConnectString yields the result of applying Qt’s SLOT macro to the string
representing the slot. The C wrapper should export the string as a C variable2 and
slotConnectString should just access this variable. The value of the args argument must
not be evaluated. It is just there to specify the types of the arguments.

2This is possible since the string is created by macro expansion and therefore known at compile time.

4

3.6 Signals
Signals are represented by instances of the Signal class which is defined as follows:

class Signal classID signalID args where

signalConnectString :: classID → signalID → args → String

signalConnectString works analogous to slotConnectString .
Although signals cannot be called like methods (and therefore slots), a function equiv-

alent to a partial application of Application should also be defined for every signal. This
will be used when connecting signals to slots as described in subsection 3.8.

3.7 Dropping arguments
When connecting a signal to a slot, it is possible for the signal to have more arguments
than the slot. The only precondition for a connection is that the list of slot argument
types matches a prefix of the list of signal argument types. We develop a class whose
instances show which argument type lists are prefixes of what other argument type lists.

For implementing our type class with little effort, we first introduce a type family Init :

type family Init args :: ∗

Applying Init to a list of argument types drops the last argument type.
We first deal with the case of a single argument. This is problematic because we do

not use a special type (like a tuple type) for argument lists of length one but the type
of the argument directly. The straightforward instance

type instance Init soleArg = ()

does not work because this would also introduce () as the result for all tuple types.3
Therefore, we explicitly list all single argument cases which may occur. Since we only
use reference types and some types corresponding to simple C++ types as argument
types, we can use the following declarations:

type instance Init Bool = ()
type instance Init Char = ()
type instance Init Int = ()
type instance Init Double = ()
type instance Init (Ref classID) = ()

Now we would have to give an instance declaration for every possible tuple type. Since
there are infinitely many of them, this is not possible. However, a method has not more

3Note that at the moment of writing, overlapping is not allowed for type families. If closed type families
become available at some point in the future, Init could be a closed type family with a default case for
single arguments. Using closed type families would be advantageous anyway because with the current
solution, a library user can easily extend the Init family and thereby allow signal-slot connections
which are not type-correct.

5

than a small number of arguments typically, so we can limit our list to a reasonable
finite size. We give the instance declarations

type instance Init (arg1, arg2) = arg1

type instance Init (arg1, arg2, arg3) = (arg1, arg2)
type instance Init (arg1, arg2, arg3, arg4) = (arg1, arg2, arg3)
type instance Init (arg1, arg2, arg3, arg4, arg5) = (arg1, arg2, arg3, arg4)

and so on.
Now we declare the Prefix class and give two instances forming an inductive definition

of the prefix property:

class Prefix prefix args
instance Prefix args args
instance (Prefix prefix (Init args))⇒ Prefix prefix args

Note that we need to allow overlapping class instances for this to work.

3.8 Connections
We will provide a connect function which corresonds to Qt’s function Qt ::connect . In
contrast to this function, our function will allow for a nicer syntax. Qt’s connect function
takes two argument for each the signal and the slot. One denotes the respective object
and one the signal or slot, including the list of argument types. Our connect function
shall take two arguments, each denoting a so-called port. A port is a pair of a reference
and a signal or slot. We define a Port type:

data Port classID portID args = Port (Ref classID) portID

We want to specify ports using a syntax similar to method calls. The operator
serves this purpose:4

infix 0
() :: Ref classID → Application portID args → Port classID portID args
ref Application portID args = Port ref portID

The second argument denotes the signal or slot which is usually given as a function
application. The argument of this application is only needed to give the signal’s or slot’s
argument types. Its value is irrelevant. We usually write it as (args :: (. . .)) which works
since there is a variable args defined as follows:

args :: args
args = error "Argument list placeholder cannot be evaluated."

We are now ready to give the implementation of connect :
4Note that is different from ;.

6

connect :: (Signal signalClassID signalID signalArgs,
Slot slotClassID slotID slotArgs,
Prefix slotArgs signalArgs)⇒

Port signalClassID signalID signalArgs →
Port slotClassID slotID slotArgs →
IO ()

connect signalPort slotPort = nativeConnect (ptr signalRef)
signalConnectStr
(ptr slotRef)
slotConnectStr where

Port signalRef signalID = signalPort
Port slotRef slotID = slotPort
signalConnectStr = signalConnectString (classID signalRef)

signalID
(fakeArgs signalPort)

slotConnectStr = slotConnectString (classID slotRef)
slotID
(fakeArgs slotPort)

This implementation uses two helper functions. First, there is

nativeConnect :: Ptr CChar → String → Ptr CChar → String → IO ()

which is a binding to QObject ::connect . Second, there is fakeArgs which restores the
argument list placeholder for a given port and is defined as follows:

fakeArgs :: Port classID portID args → args
fakeArgs = const args

Note that our connect function should never fail since we can assure that the specified
ports exist and are compatible. On the other hand, Qt’s connect method works with
string arguments. This makes it impossible to check for compatibility of signals and
slots and even for existence of signals and slots at compile time, making runtime checks
necessary.

3.9 Subclassing
As mentioned in section 1, we do not want to provide means for creating new subclasses.
However, we want to mirror the existing inheritance structure of the respective C++
library and provide a casting function on top of this.

We declare a class whose instances denote subclass-superclass relationships:

class Subclass subclassID superclassID where

ptrCast :: subclassID → superclassID → Ptr CChar → Ptr CChar

7

The ptrCast method calls a respective C wrapper function which converts a subclass
pointer to a superclass pointer. Note that it is not possible in general to just treat the
subclass pointer as a superclass pointer without any actual conversion. Pointer conver-
sion in C++ is likely to change internal representations as soon as virtual superclasses
come into play. In order to stay portable, we propose to always use actual conversion
functions.

Based on ptrCast , we implement a cast function intended for the user which works on
Ref values:

cast :: (Subclass subclassID superclassID)⇒ Ref subclassID → Ref superclassID
cast subclassRef = superclassRef where

superclassRef = Ref $ ptrCast (classID subclassRef)
(classID superclassRef)
(ptr subclassRef)

4 Example
We will show our approach in action by translating the example from the “Making
connections” section of the first edition of “C++ GUI Programming with Qt 4”.

First we show what a binding to Qt would have to contain in order for our translation
to work. We start with the class IDs:

data QApplication = QApplication
data QPushButton = QPushButton

Now we introduce method, signal and slot IDs as well as their corresponding partial
applications of the Application data constructor:

data Exec = Exec
exec = Application Exec
data Quit = Quit
quit = Application Quit
data Show = Show
show = Application Show
data Clicked = Clicked
clicked = Application Clicked

Finally, we need to provide the various class instances:

instance Constructor QApplication [String] where

. . .

instance Destructor QApplication where

8

. . .

instance Method QApplication Exec () where

type Kind QApplication Exec () = Static
type Result QApplication Exec () = ()
. . .

instance Method QApplication Quit () where

type Kind QApplication Quit () = Static
type Result QApplication Quit () = Int
. . .

instance Slot QApplication Quit () where

. . .

instance Constructor QPushButton (String) where

. . .

instance Method QPushButton Show () where

type Kind QPushButton Show () = Instance
type Result QPushButton Show () = ()
. . .

instance Signal QPushButton Clicked () where

. . .

And now the example code translated into Haskell:

main :: IO ()
main = do

cmdLineArgs ← getArgs
appRef ← new QApplication (cmdLineArgs)
buttonRef ← new QPushButton ("Quit")
connect (buttonRef clicked (args :: ()))

(appRef quit (args :: ()))
buttonRef ; show ()
Class QApplication ; exec ()
delete appRef
return ()

9

	Our goal
	Basics
	The solution in detail
	Classes
	References
	Constructors and destructors
	Methods
	Slots
	Signals
	Dropping arguments
	Connections
	Subclassing

	Example

